The National Hydrography Dataset (NHD)

U.S. Geological Survey
U.S. Environmental Protection Agency
U.S. Department of Agriculture Forest Service
U.S. Department of Interior's National Park Service
Bureau of Land Management

What is NHD

National Hydrography Dataset (NHD)

combined dataset

- provides seamless hydrographic data for the United States "The National Map"
- contains information about surface water features

lakes, ponds, streams, rivers, springs wells

National Hydrography Dataset

How Maine's NHD developed

Description of Data

NHDinGEO

NHD data in ESRI geodatabase format

6 main feature classes

NHDFlowline

NHDWaterbody

NHDPoint

NHDArea

NHDLine

HYDRO_NET

Flow Relations				
Common Identifier for First Reach	Common Identifier for Second Reach	Direction Description		
1	2			
4	2	In		
3	5	In		
5	3	In		
2	3	In		
)	1	Network Start		
0	4	Network Start		
)	6	Network Start		
)	5	Network Start		
3	0	Network End		

Figure 6. Flow relations illustrating in, out, network start, and network end directions.

(A common identifier value of "0" represents a null entry.)

Flow Relations				
Common Identifier for First Reach	Common Identifier for Second Reach	Direction Description		
1	3	In		
1	4	In		
2	1	Out		
5	3	Out		
5	3	In		

Hydrography Feature Classes

Hydrography Feature Classes

NHDWaterbody

hydrographic waterbody features:

lakes, ponds, swamps, marshes floodways & floodplains

NHDPoint

hydrographic landmark features:

gaging station,

rock,

spring/seep

waterfall

Hydrography Feature Classes

NHDArea

hydrographic landmark features: sea/ocean stream/river

NHDLine

linear hydrographic landmark features:

dams bridges, gates

HYDRO_NET

geometric network for flow navigations

Event tables are also included for point, line and area events.

Figure 1. Features are delineated using points, lines, or areas

Characteristics of the National Hydrography Dataset

Unique *reach* codes:

- networked features
- isolated water bodies

structured to accommodate higher resolution data

"A reach is a continuous piece of surface water with similar hydrologic characteristics - such as a stretch of stream between two confluences"

Attributes in NHD

Feature Code Type Characteristic | Value Feature Type Characteristic | Value Characteristic | Value Feature type only: no attributes Construction Material|earthen; Operational Status|operational Status|operational Construction Material|nonearthen; Operational Status|operational Construction Material|nonearthen; Operational Status|operational Construction Material|nonearthen; Operational Status|under construction

FCode & Ftype

codes that contain information as to the type of feature

Geographic Names Information System (GNIS)

Federally recognized name of a feature

Defines the location of the feature:

state,

county,

USGS topographic map geographic coordinates

Attributes in NHD

NHD Applications

linked water related data through "reaches"

enable analysis and display of data in upstream and downstream order

NHD-based network analysis with other data:

soils
land use
population

Understanding & display of affects

Flow Relations				
Common Identifier for First Reach	Common Identifier for Second Reach	Direction Description	Sequence	
1	3	In	0	
2	3	In	.0	
5	3	Out	1	
5	3	In	3	
4	3	In	2	
3	8	Non-flowing Connection	0	
0	6	Network Start	0	
6	8	Non-flowing Connection	1	
7	8	Non-flowing Connection	0	

Figure 10. Sequencing flow relations along transport and coastline reaches.

(A common identifier value of "O" represents a null entry.)

Identifying level paths through the drainage network

Main points

- A level path is a sequence of transport reaches that traces the main stem for a given flow of water.
- Stream level identifies the main path to which a transport reach belongs
- The delta level identifies main paths of water flow among flow relation

Example: Linear Transport Reach

The Value of NHD to Maine

comprehensive hydrographic coverage modeling and analytical capabilities
- cause and affect relationships

enhanced cartographic applications

"*local* to national" function & relevance

Waters subject to

Maine's Move to NHD

- Tracking pollution discharges
- Applying the Impaired Waters Rule
- Locating fish and aquatic animal habitats
- Better define drainage catchments
- Emergency management (Flooding/Hurricane)
- Tracking upstream/downstream interaction
- Enhance stream classifications
- Stream Level/Stream Order
- Apply event locations

Why use NHD?

Compliment to State & Federal water management programs

"one stop" system / interstate

Ease of Data Sharing:

only attribute data tables that contain the spatial linkages need to be shared

Why use NHD?

EPA reference to Total Maximum Daily Load (TMDL) data on NHD hydrography

TMDL and 303d (water quality limited) streams referenced against NHD data

Georeference

- of fisheries data
- water quality information

The NHD Stewardship role

- Built, used & maintained
- Knowledge of <u>local</u> hydrography
- Requirements for precise & current data
- Maine has signed a stewardship agreement with the USGS for this purpose

What's in Store for NHD in Maine

Getting Started

The NHD Tutorial Series

- NHD Quickstart- The "NHD Quickstart" is a condensed reference document to help users obtain and view NHD data, and navigate the NHD Flow Path.
 - Adobe PDF Format (121KB)
- NHDinGEO Tasks The "NHDinGEO Tasks for ArcGIS 8.3 and Higher" is an in-depth reference document which describes how to use the NHD with ESRI's ArcGIS system.
 - o Adobe PDF Format (133KB)

Obtaining NHD data

NHD data will be stored and kept current in the MEGIS SDE database.

Nationwide NHD available for download

